Master of Science (M.Sc.) Semester-III (CBCS)
(Chemistry) Examination
Analytical Chemistry Special-I (CH-3T1)
Paner-IX

	(Chemistry) Examination Analytical Chemistry Special-I (CH-3T1) Paper-IX		(b) (c)	Explain catalytic effects in voltammetry. Explain cyclic voltammogram of reversible redox system with example.	4
	Time: Three Hours] [Max. Marks: 60 N.B.: 1. All questions are compulsory 2. All questions carry equal marks		(0)	OR	4
	Use of Calculator is permitted Draw labelled diagrams wherever necessary		3(d)	What are electrochemical sensors? Explain construction and working of potentiometric sensor with suitable example.	4
1 (a)	Explain the method of calibration of Gamma ray spectrometer having NaI(TI) detector.	4	(e)	Explain various types of carbon electrodes used in voltammetry. Give	4
/b)		4		advantages of carbon electrodes.	
(b)	What is meant by radioactivity? Give units of radioactivity and also give relations between various units.	4	(f)	Give principle and technique in Adsorptive Stripping Voltammetry.	4
(c)	Explain principle and working of GM counter.	4	4(a)	Draw and explain Jablonski diagram. Name the allowed and forbidden	4
	OR			transitions in it.	
1(d)	Define half life and mean life. Calculate them for a radioisotope which	4	(b)	Discuss instrumentation in nephelometry. How it differs from	4
	decays to 20 % in 12 days.			turbidimetry?	
(e)	Explain the interaction of alpha particle with matter.	4	(c)	Draw a well labelled diagram of instrumentation involved in PAS.	4
(f)	Explain the pulse height voltage curve for a gas filled counter and	4		OR	
	various regions in it.		4(d)	How will you estimate copper and nickel in a mixture using electrogravimetry?	4
2(a)	Explain cold vapour AAS for estimation of mercury. How can it be	4	(e)	Explain the terms: (i) Fluorescence quenching (ii) back emf.	4
	extended to arsenic estimation?		(f)	Explain the instrumentation of fluorometry.	4
(b)	Explain construction and working of hollow cathode lamp.	4	.,	, ,	
(c)	Compare AAS with flame emission spectroscopy.	4	5(a)	Define RBE and Gray. Convert a dose of 127.5 kGy into eV.	3
	OR		(b)	Explain the term ' flame profile' in AAS.	3
2(d)	What are different types of atomizers? Explain working and advantages	4	(c)	What is the effect of adsorption on cyclic voltammograms?	3
	of total consumption burner.		(d)	Explain Faraday's first law of electrolysis and give its application.	3
(e)	What is the role of 'beam modulation' and 'monochromator' in AAS.	4			
(f)	What are chemical interferences in AAS? How can they be overcome?	4			

3(a)

Explain principle and applications of Anodic Stripping Voltammetry.