20822-1	Post Graduate Teaching Department of Chemistry Master of Science (M.Sc.) Semester-II (CBCS) (Chemistry) Examination		(5)	permanganate is 2240 at 525 nm, calculate percentage of Mn in alloy. (Mn=54.98 g/mol)	4
	Analytical Chemistry (CH-204) Paper-VIII Time: Three Hours] [Max. Marks: 60		(c)	How will you determine the two coloured components present in a solution which interfere with each other simultaneously? OR	4
	N.B.: 1. All questions are compulsory and carry equal marks3. Use of Calculator is permitted4. Draw labelled diagrams wherever necessary		3(d)	Define the terms and give their units: (i) Transmittance (ii) Absorbance (iii) Molar absorptivity (iv) Sandell's sensitivity	4
•			(e)	How do you determine pK of indicator by spectrophotometry?	4
	Explain the method of sampling of soil with respect to sampling tool procedure and precautions.	s, 4	(f)	Calculate the molar extinction coefficient of a compound (Mol. wt. 80) whose 0.001 M solution shows absorbance of 0.93 in a cell of pathlength	4
(b)	Titration of 50.0 mL of 0.047 M $Na_2C_2O_4$ required 39.25 mL of potassium	4		1.0 cm.	
	permanganate solution according to reaction-				
	$2\text{MnO}_4^- + 5\text{Na}_2\text{C}_2\text{O}_4 + 6\text{H}^+ \longrightarrow 2\text{Mn}^{2+} + 10\text{CO}_2 + 8\text{H}_2\text{O}$		4(a)	Explain principle and instrumentation of amperometric titrations.	4
(c)	Calculate the molar concentration of KMnO ₄ .	4	(b)	An unknown solution of organic compound (M.W.=120) yielded a	4
(0)	Explain sample wet digestion and dry ashing methods of sample	•		diffusion current of 0.650 μ A. To 10.0 mL of this solution, 0.1 mL of standard 25.0 mM solution was added when the diffusion current was	
	preparation. OR			found to be 0.730 μ A. Calculate the concentration of organic compound	
1(d)		4		in original solution.	
(e)	In hardness experiment, 100 mL water samples were titrated with	4	(c)	Explain the principle of differential pulse polarography. OR	
	standard EDTA solution. It required 15.35 mL of 0.0125 M EDTA solution		4(d)	Explain the role of (i) maxima suppressor (ii) nitrogen purging, in	4
	for total hardness and 9.15 mL of 0.0125 M EDTA solution for permanent hardness. Calculate the total, permanent and temporary hardness in		,	polarography.	
	terms of ppm of CaCO ₃ .		(e)	Diffusion coefficient of O_2 in dilute aqueous solution is 2.61 ×10 ⁻⁵ cm ² /s.	4
(f)	Write short note on: (i) substoichiometric titration (ii) coning and quartering.	4		A 1.0 mM solution of O_2 gives diffusion current of 23.2 μ A. If m=1.84 mg/s and t=4.10 s, calculate the number of electrons involved (n) in reduction of oxygen molecule and also predict the product formed.	
2(a)	Describe principle, construction and working of electron capture detector.	4	(f)	What is meant by charging current? How is it originated? How can you eliminate it?	
(b)	Equal volumes of mono, di and tri-chlorobenzene were found to have areas of 6.36, 7.55 and 7.45 cm ² on a chromatogram. Calculate the percentage composition of the system.	4	5(a)	How will you prepare 500 mL of approximately 0.1 N HCl solution starting with concentrated HCl solution (11.3N)?	1½ ×8
(c)	What is temperature programmed GC? Give its advantages.	4	(b)	Define 'sensitivity' and 'limit of detection'.	
	OR			Give advantages of supercritical fluid chromatography.	
2(d)	Give advantages of SFC over GC and HPLC. Describe any two types of detectors used in HPLC.	4	(d)	What is meant by gradient elution in chromatography?	
(e) (f)	Calculate the number of theoretical plates if retention time is 104 s and	4	(e)	Explain principle of Jobs method of continuous variation.	
()	width of the peak base is 4 s.		(f)	Draw well labelled schematic diagram of double beam	
2/)				spectrophotometer.	
3(a)	Explain construction and working of premix burner in flame photometry.	4	(g)	Define 'half wave potential' and give its significance.	
(b)	A 0.5 g alloy sample was dissolved in acid and Mn was oxidized to	4	(h)	Write Ilkovic equation and explain terms involved.	
	permanganate. The solution was diluted to 100 mL. The absorbance in				

1.00 cm cell at 525 nm was found to be 0.350. If molar absorptivity of